文章编号：1673 - 9868(2007)08 - 0043 - 06

一类二阶奇异边值问题的正解

熊明

大理学院 数学系，云南 大理 671000

摘要：讨论了如下二阶奇异边值问题正解的存在性

\[-(p(t)u'(t))' + q(t)u(t) = f(t, u(t)) \quad t \in (0, 1)\]
\[u(0) = u(1) = 0\]

其中 \(f\) 可能在 \(t = 0, 1\) 都有奇性。

关键词：奇异边值问题；正解；变分法

中国分类号：O175.8

文献标识码：A

我们考虑如下二阶常微分方程奇异边值问题

\[-(p(t)u'(t))' + q(t)u(t) = f(t, u(t)) \quad t \in (0, 1)\]
\[u(0) = u(1) = 0\] (1)

其中函数 \(p, q\) 满足如下条件:

(P) \(p(t) \in C[0, 1] \cap C^1(0, 1), p(t) \geq p_0 > 0, q(t) \in C[0, 1], q(t) \geq 0,\)

对函数 \(f\) 我们假设:

(F) \(f \in C((0, 1) \times [0, +\infty), [0, +\infty)), a(t)f_1(x) \leq f(t, x) \leq a(t)f_2(x), a(t) \in C(0, 1), a(t) > 0\)

且可能在 \(t = 0, 1\) 都有奇性，\(\lim_{s \to +\infty} \int_s^1 a(t)dt = 0; f_1, f_2 \in C([0, +\infty)), f_1, f_2 \geq 0,\)

我们说函数 \(u\) 是(1)的古典解，如果 \(u \in C[0, 1] \cap C^2(0, 1)\) 且满足问题(1)中方程和边界条件，定义带权的 \(L^2\) 空间为：

\(L^2_\alpha = \{u \mid \int_0^1 a(t)u^2(t)dt < +\infty\} ; L^2_\alpha\) 上的范数记作 \(\| \cdot \|_\alpha ; \| u \|_\alpha = \left\{ \int_0^1 a(t)u^2(t)dt \right\}^{1/2}.\)

记 Soblev 空间 \(H^1_\alpha\) 的范数为 \(\| \cdot \|_H ; \| u \|_H = \left\{ \int_0^1 |u'(t)|^2dt \right\}^{1/2}.\) 文献[1]证明了：当 \(\lim_{s \to +\infty} \int_s^1 a(t)dt = 0\) 时，\(H^1_\alpha\) 紧嵌入到 \(L^2_\alpha.\)

在 \(H^1_\alpha\) 中引入另一范数 \(\| \cdot \|_H.\) 如下：\(\| u \|_H = \left\{ \int_0^1 [p(t)|u'(t)|^2 + q(t)u^2(t)]dt \right\}^{1/2}.\) 由 Soblev 不等式及条件(P)，\(\| \cdot \|_H\) 与 \(\| \cdot \|_H\) 是 \(H^1_\alpha\) 上的等价范数。因此，我们有如下的定理：

定理 A 在范数 \(\| \cdot \|_H\) 下，当 \(\lim_{s \to +\infty} \int_s^1 a(t)dt = 0\) 时，\(H^1_\alpha\) 紧嵌入到 \(L^2_\alpha.\)

下面提到的 \(H^\lambda\) 其范数都是指 \(\| \cdot \|_H.\) 设

\[\lambda = \inf_{u \in H^1_\alpha} \frac{\int_0^1 [p(t)|u'(t)|^2 + q(t)u^2(t)]dt}{\int_0^1 a(t)u^2(t)dt}\]

\[\lambda = \inf_{u \in H^1_\alpha} \frac{\int_0^1 [p(t)|u'(t)|^2 + q(t)u^2(t)]dt}{\int_0^1 a(t)u^2(t)dt}\]

\[\lambda = \inf_{u \in H^1_\alpha} \frac{\int_0^1 [p(t)|u'(t)|^2 + q(t)u^2(t)]dt}{\int_0^1 a(t)u^2(t)dt}\]

\[\lambda = \inf_{u \in H^1_\alpha} \frac{\int_0^1 [p(t)|u'(t)|^2 + q(t)u^2(t)]dt}{\int_0^1 a(t)u^2(t)dt}\]
由定理 A 显然有：

推论 存在极值函数 \(\varphi \in C[0, 1] \cap C^1(0, 1) \)，对 \(\forall t \in (0, 1) \)，\(\varphi(t) > 0 \)，有

\[
\lambda = \int_0^1 \frac{[p(t) \varphi'(t) + q(t) \varphi(t)]^2}{a(t) \varphi(t)} dt
\]

且满足方程

\[
\begin{align*}
\varphi(t) - (p(t) \varphi'(t))' + q(t) u(t) &= \lambda a(t) \varphi(t) \quad t \in (0, 1) \\
\varphi(0) = \varphi(1) = 0
\end{align*}
\]

设

\[
\begin{align*}
f_0^- &= \lim_{t \to 0^+} \frac{f_1(t)}{t} \\
f_\infty^- &= \lim_{t \to \infty} \frac{f_1(t)}{t}
\end{align*}
\]

我们的主要结果如下；

定理 设 \(p, q \) 满足条件 (P)，\(f \) 满足条件 (F)，又设 \(f_0^- < \lambda < f_\infty^- \leq f_\infty < +\infty \) 或 \(f_0^- < \lambda < f_\infty^- < f_\infty < +\infty \)，则 (1) 存在非正解。

注 当 \(p(t) \equiv 1, q(t) \equiv 0 \) 时，就得到文献 [1] 的结果，因此，我们的定理是文献 [1] 中结果的推广。

我们采用变分法证明，将 \(f \) 作零延拓成 \((0, 1) \times \mathbb{R} \) 上的函数，仍记为 \(f, F \) 是 \(f \) 的原函数，

\[
F(t, u) = \int_0^u f(t, s) ds \]

考虑 \(H_0^1 \) 上的函数

\[
I(u) = \frac{1}{2} \int_0^1 (p(t) u'(t)^2 + q(t) u(t)^2) dt - \int_0^1 F(t, u(t)) dt
\]

当 \(f_0^- < +\infty, f_\infty^- < +\infty \) 时，\(I \) 在 \(H_0^1 \) 上有定义，\(I \) 的临界点是 (1) 的弱解。由正则性理论，任何弱解都是古典解。

1 引理

为了证明定理，我们需要下面的引理。

引理 1 设 \(f_0^- < +\infty, f_\infty^- < +\infty \)，则 \(I \) 是 \(H_0^1 \) 上的 \(C^1 \) 泛函，\(I \) 的 Fréchet 导数有如下表示

\[
(I'(u), \varphi) = \int_0^1 (p(t) u'(t) \varphi'(t) + q(t) u(t) \varphi(t)) dt - \int_0^1 f(t, u(t)) \varphi(t) dt \quad \forall \varphi \in H_0^1
\]

引理 1 的证明很容易，我们省略。

引理 2 设条件 (P)，(F) 满足，且 \(f_0^- < \lambda < f_\infty^- < f_\infty < +\infty \) 或 \(f_0^- < \lambda < f_\infty^- < f_\infty < +\infty \)，则 \(I \) 满足 P. S 条件。

证 设 \(\{u_n\} \) 是 P. S 序列，则有

\[
(I'(u_n), \varphi) = \int_0^1 (p u_n' \varphi' + q u_n \varphi) dt - \int_0^1 f(t, u_n(t)) \varphi(t) dt = o(\| \varphi \|_1) \quad \forall \varphi \in H_0^1
\]

在(2) 式中我们取 \(\varphi = u_n \)，并注意到 \(f(t, u_n(t)) \leq c(t) u_n^+ \)，可知 \(u_n \) 在 \(H_0^1 \) 一致有界，设 \(u_n \to u \)，由嵌入定理 A，在 \(L^2 \) 中有

\[
\| u_n - u \|_2 \xrightarrow{a(t)} \| u_n - u \|_2
\]

在(2) 式中我们取 \(\varphi = u_n - u_m \)，得

\[
\int_0^1 [p u_n' (u_n' - u_m') + q u_n (u_n - u_m)] dt - \int_0^1 f(t, u_n)(u_n - u_m) dt = o(\| u_n - u_m \|_1)
\]

(3)

\[
\int_0^1 [p u_m' (u_n' - u_m') + q u_m (u_n - u_m)] dt - \int_0^1 f(t, u_m)(u_n - u_m) dt = o(\| u_n - u_m \|_1)
\]

(4)

由(3) 和(4) 得

\[
\int_0^1 [p u_n' (u_n' - u_m') + q u_n (u_n - u_m)] dt - \int_0^1 f(t, u_n)(u_n - u_m) dt = o(\| u_n - u_m \|_1)
\]
$$\| u_n - u_m \| \leq \int_0^1 [p(u_n' - u_m')^2 + q(u_n - u_m)^2] dt$$
$$\leq \int_0^1 | f(t, u_n) - f(t, u_m) | | u_n - u_m | dt + o(1)$$
$$\leq \frac{\int_0^1 | f(t, u_n) - f(t, u_m) | a(t) | u_n - u_m | dt}{a(t)} + o(1)$$

由此可知在 H^1_0 中 $u_n \to u$.

可以证明任何 P.S 序列 $\{u_n\}$ 在 L^2_0 中一致有界，事实上，如果 $\| u_n^+ \|_a \to +\infty$，令

$$v_n = \frac{u_n}{\| u_n \|_a} \quad \| v_n \|_a = 1$$

在 (2) 式中取 $\varphi = u_n$，则 $\{v_n\}$ 是 H^1_0 中的有界序列。从而在 H^1_0 中 $v_n \to v$，在 $C[0, 1]$ 和 L^2_0 中 $v_n \to v$，且 $\| v^+ \|_a = 1$，由 (2) 式可得

$$\int_0^1 (pv_n' \varphi' + qv_n \varphi) dt = \int_0^1 \frac{f(t, u_n) \varphi}{\| u_n \|_a} dt + o(1)$$

当 $f^+_0 < \lambda < f^-_0 \leq f^-_\infty < +\infty$ 时，取 $\varepsilon > 0$ 且 $f^-_\infty - \varepsilon > \lambda$，可取 $M > 0$，使得当 $x > M$ 时

$$f_1(x) \geq (f^-_\infty - \varepsilon) x$$

对 $\varphi \in H^1_0$ 且 $\varphi \geq 0$，由 (2) 式有

$$\int_0^1 (pv_n' \varphi' + qv_n \varphi) dt = \int_0^1 \frac{f(t, u_n) \varphi}{\| u_n \|_a} dt + o(1)$$

$$\geq \frac{\int_0^1 a v^+_n \varphi dt + o(1)}{\| u_n \|_a}$$

$$\geq \frac{\int_0^1 a v^+_n \varphi dt}{\| u_n \|_a} + (f^-_\infty - \varepsilon) \int_0^1 a v^+_n \varphi dt + o(1)$$

$$(f^-_\infty - \varepsilon) \int_0^1 a v^+_n \varphi dt - c \int_0^1 a v^+_n \varphi dt + o(1)$$

当 $n \to \infty$，有

$$\int_0^1 (pv' \varphi' + qv \varphi) dt \geq (f^-_\infty - \varepsilon) \int_0^1 a v^+_n \varphi dt \quad \forall \varphi \in H^1_0, \varphi \geq 0$$

在 (8) 式中取 φ 为推论中的极小函数，则

$$\lambda \int_0^1 a v^+_n \varphi dt \geq \lambda \int_0^1 a v^+_n \varphi dt = \int_0^1 (pv_n \varphi' + qv_n \varphi) dt \geq (f^-_\infty - \varepsilon) \int_0^1 a v^+_n \varphi dt$$

即 $a v^+_n \equiv 0$，从而 $\| v^+_n \|_a = 0$，矛盾。

当 $f^+_0 < \lambda < f^-_0 \leq f^-_\infty < +\infty$ 时，取 $\varepsilon > 0$ 使 $f^-_\infty + \varepsilon < \lambda$，对于 $0 \leq \varphi \in H^1_0$ 与 (7) 类似，我们有

$$\int_0^1 (pv_n \varphi' + qv_n \varphi) dt \leq (f^-_\infty + \varepsilon) \int_0^1 a v^+_n \varphi dt + c \int_0^1 a v^+_n \varphi dt + o(1)$$

当 $n \to \infty$，有

$$\int_0^1 (pv_n \varphi' + qv_n \varphi) dt \leq (f^-_\infty + \varepsilon) \int_0^1 a v^+_n \varphi dt \quad \forall \varphi \in H^1_0, \varphi \geq 0$$

在 (10) 式中取 $\varphi = v^+$，由 λ 的定义有

$$\lambda \int_0^1 a (v^+)^2 dt \leq \int_0^1 [p | (v^+)' |^2 + q (v^+) \varphi^2] dt \leq (f^-_\infty + \varepsilon) \int_0^1 a(v^+)^2 dt$$
由\(\int_0^1 a(v^+) dt = 1\)，得\(\lambda \leq f_-^+ + \epsilon\)，与假设矛盾。因此，\(\{u_+^\ast\}\) 是 \(L^2\) 中的有界序列，I 满足 P. S 条件。

2 定理的证明

首先考虑 \(f_-^+ < \lambda < f_0^- \leq f_+^+ \leq +\infty\) 的情形。

当 \(f_-^+ \leq \lambda < f_0^- \leq f_+^+ < +\infty\) 时，泛函 I 是紧致的，即当 \(|u| \to \infty\) 时，\(I(u) \to \infty\)。若不然，设 \(\{u_n\} \subset H^1\)，\(|u| \to \infty\)，但 \(I(u_n) \leq c < +\infty\)。令 \(v_n = \frac{u_n}{||u_n||_2}\)，则 \(|v_n|_2 = 1\)，且有

\[
I(u_n) = \frac{1}{2} \int_0^1 \left[p(u_n')^2 + qv_n^2 \right] dt - \int_0^1 F(t, u_n(t)) dt
\]

两边同时除以 \(|v_n|_2^2\)，有

\[
\int_0^1 \frac{F(t, u_n(t))}{|u_n|^2} dt \geq o(1) + \frac{1}{2} \lambda
\]

取 \(\epsilon > 0\)，使 \(f_-^+ + \epsilon < \lambda\)，取 \(M > 0\)，当 \(x > M\) 时，\(F(t, x) \leq \frac{1}{2} (f_-^+ + \epsilon) a(t) x^2\)。从而有

\[
\int_0^1 \frac{F(t, u_n(t))}{|u_n|^2} dt \leq \frac{1}{2} (f_-^+ + \epsilon) \int_0^1 a(v_n^2) dt + c \int_0^M a(v_n^2) dt
\]

由已知，在 \(L^2\) 中 \(v_n \to v\)，得到 \(\lambda \leq f_-^+ + \epsilon\)。矛盾，所以 I 是紧致的。而 I 下方有界且满足 P. S 条件，所以 I 达到下界。

下证平凡解 \(\theta\) 不是全局极小，从而 I 的全局极小点是非平凡解。事实上，取 \(\varphi_0\) 是推论中的特征函数，则

\[
\int_0^1 \left[p |\varphi_0'|^2 + q\varphi_0^2 \right] dt = \lambda \int_0^1 a\varphi_0^2 dt
\]

选取 \(\epsilon > 0\) 和 \(\sigma > 0\)，使得 \(f_-^- - \epsilon > \lambda\)，当 \(0 < x < \delta\)，\(F(t, x) \geq \frac{1}{2} (f_-^- - \epsilon) a(t) x^2\)。于是

\[
I(\sigma \varphi_0) = \frac{1}{2} \sigma^2 \int_0^1 \left[p |\varphi_0'|^2 + q\varphi_0^2 \right] dt - \int_0^1 F(t, \sigma \varphi_0(t)) dt
\]

\[
\leq \frac{1}{2} \sigma^2 \int_0^1 \left[p |\varphi_0'|^2 + q\varphi_0^2 \right] dt - \frac{1}{2} (f_-^- - \epsilon) \sigma^2 \int_0^1 a\varphi_0^2 dt
\]

\[
= \frac{1}{2} \sigma^2 \|\varphi_0\|^2 - \frac{1}{2\lambda} (f_-^- - \epsilon) \sigma^2 \|\varphi_0\|^2
\]

\[
= \frac{1}{2} \sigma^2 \|\varphi_0\|^2 \left(1 - \frac{f_-^- - \epsilon}{\lambda}\right) < 0
\]

其次考虑 \(f_-^- < \lambda < f_-^- \leq f_+^+ < +\infty\) 的情形。

我们用萜路引理证明，为此先证在一个小球上 I 有下界。取 \(\epsilon > 0\) 使得 \(f_-^- + \epsilon < \lambda\)，对充分小的 \(\rho > 0\)，让 \(|u|_2 = \rho\)。我们有

\[
I(u) = \frac{1}{2} \int_0^1 \left[p(t) |u'(t)|^2 + q(t) u^2(t) \right] dt - \int_0^1 F(t, u(t)) dt
\]

\[
\geq \frac{1}{2} \int_0^1 \left[p(t) |u'(t)|^2 + q(t) u^2(t) \right] dt - \frac{1}{2} (f_-^- + \epsilon) \int_0^1 a(t) u^2 dt
\]

\[
\geq \frac{1}{2} \left(1 - \frac{f_-^- + \epsilon}{\lambda}\right) \int_0^1 \left(p(t) |u'(t)|^2 + q(t) u^2(t) \right) dt
\]

\[
= \frac{1}{2} \left(1 - \frac{f_-^- + \epsilon}{\lambda}\right) \rho^2 = a > 0
\]

另一方面，取 \(\epsilon > 0\) 使得对 \(\forall x > 0\)，\(F(t, x) \geq \frac{1}{2} (f_-^- - \epsilon) a(t) x^2 - C a(t)\)，于是有

\[
I(T\varphi_0) = \frac{1}{2} T^2 \int_0^1 \left[p(t) |\varphi_0'|^2 + q(t) \varphi_0^2 \right] dt - \int_0^1 F(t, T\varphi_0(t)) dt
\]
\[
\leq \frac{1}{2} T^2 \int_0^1 (p(t) \mid \varphi_0 \mid^2 + q(t) \varphi_0^2) dt - \int_0^{t_0} F(t, T \varphi_0) dt
\]

\[
\leq \frac{1}{2} T^2 \| \varphi_0 \|_2^2 - \frac{1}{2} T^2 (f_\infty - \epsilon)^2 \int_0^{t_0} a(t) \varphi_0^2 dt + C \int_0^{t_0} a(t) dt
\]

我们可以选取 \(\delta \)，使得

\[
\| \varphi_0 \|_2^2 - (f_\infty - \epsilon)^2 \int_0^{t_0} a(t) \varphi_0^2 dt < 0
\]

从而当 \(T \) 充分大时有

\[
\frac{1}{2} T^2 \| \varphi_0 \|_2^2 - (f_\infty - \epsilon)^2 \int_0^{t_0} a(t) \varphi_0^2 dt + C \int_0^{t_0} a(t) dt < 0
\]

由山路引理，令

\[
c = \inf \sup_{\gamma \in \Gamma} I(\gamma(t))
\]

其中

\[
\Gamma = \{ \gamma \mid \gamma \in C([0, 1], H^1), \gamma(0) = \theta, \gamma(1) = T \varphi \}
\]

则 \(c \geq \alpha \) 是泛函 \(I \) 的临界值，而对应的临界点是（1）的古典解。

最后考虑 \(f_\infty = +\infty \) 的情形。

对 \(0 < \delta < 1 \)，定义

\[
\lambda_\delta = \inf_{u \in H^1_0} \int_0^1 \left[p(t) \mid u'(t) \mid^2 + q(t) u^2(t) \right] dt
\]

\[
\int_0^{t_0} a(t) u^2(t) dt
\]

则当 \(\delta \to 0 \) 时，\(\lambda_\delta \to \lambda \)。事实上，取 \(\varphi_0 \) 是推论中的特征函数，则

\[
\lambda \leq \lambda_\delta \leq \int_0^1 \left[p(t) \mid \varphi_0'(t) \mid^2 + q(t) \varphi_0^2(t) \right] dt
\]

\[
\int_0^{t_0} a(t) \varphi_0^2(t) dt
\]

与推论类似，存在 \(\varphi_0 \in H^1_0 \)，对 \(\forall \tau \in (0, 1) \)，\(\varphi_0(\tau) > 0 \)，使得

\[
\int_0^1 \left[p(t) \mid \varphi_0'(t) \mid^2 + q(t) \varphi_0^2(t) \right] dt = \lambda_\delta \int_0^{t_0} a(t) \varphi_0(t) \varphi_0(t) dt
\]

且有

\[
\int_0^1 \left[p(t) \varphi_0'(t) \varphi_0'(t) + q(t) \varphi_0 \varphi_0(t) \right] dt = \lambda_\delta \int_0^{t_0} a(t) \varphi_0(t) \varphi_0(t) dt
\]

设 \(G(s, t) \) 是与（1）对应的齐次边值问题的 Green 函数，则 \(G(s, t) \) 在 \(Q = [0, 1] \times [0, 1] \) 上是非负连续函数，且在 \(Q \) 内大于 0，所以，令

\[
Q_\delta = [\delta, 1-\delta] \times [\delta, 1-\delta] \quad \alpha_\delta = \min_{(s, t) \in Q_\delta} \max_{(s, t) \in Q_\delta} G(s, t)
\]

则问题（1）的解 \(u \) 满足：当 \(\tau \in [\delta, 1-\delta] \) 时，\(u(t) \geq \alpha_\delta \| u \|_{C([0, 1])} \)。

取 \(\delta, \theta \) 和 \(\lambda \)，使得 \(\lambda_\delta < \lambda < f_\infty \)。且当 \(x \geq \alpha_\delta \) 时，\(f(t, x) \geq \Delta a(t) x \)。定义截断函数:

\[
g(t, x) = \begin{cases} \Delta a(t)(x-M) + f(t, M) & x \geq M \\ f(t, x) & x < M \end{cases}
\]

\[
g_0(x) = \begin{cases} \Delta(a(x-M) + f_0(M) & x \geq M \\ f_0(x) & x < M \end{cases}
\]

\[
g_1(x) = \begin{cases} \Delta(a(x-M) + f_1(M) & x \geq M \\ f_1(x) & x < M \end{cases}
\]

显然当 \(x \geq \alpha_\delta \) 时，\(g(t, x) \geq \Delta a(t) x \)，而且 \(a(t) g_0(x) \leq g(t, x) \leq a(t) g_1(x) \).
由上面的讨论知，存在 u 满足边值问题

$$
\begin{align*}
-(p(t)u'(t))' + q(t)u(t) &= f(t, u(t)) & t \in (0, 1) \\
u(0) = u(1) &= 0
\end{align*}
$$

或

$$
\int_0^1 [p(t)u'(t)\varphi'(t) + q(t)u(t)\varphi(t)]dt = \int_0^1 g(t, u(t))\varphi(t)dt \quad \forall \varphi \in H;
$$

我们证明(11)的解满足 $0 \leq u \leq M$，从而是原问题(1)的解。若不然，设 $\|u\|_{C^0[0,1]} > M$，由 u 是上凸函数，

d $t \in [\delta, 1 - \delta]$ 时，有 $u(t) \geq M\alpha$ 和 $g(t, u(t)) \geq \Lambda\alpha u(t)$。对 $v \in H$ 且 $v \geq 0$，我们有

$$
\int_0^1 [p(t)u'(t)v'(t) + q(t)u(t)v(t)]dt \geq \int_0^1 g(t, u(t))v(t)dt \geq \Lambda \int_0^1 \alpha(t)u(t)v(t)dt
$$

特别在(12)中取 $v = \varphi_0$，可得

$$
\lambda_3 \int_0^{1-\delta} a(t)u(t)\varphi_0(t)dt = \int_0^1 [p(t)u'(t)\varphi_0'(t) + q(t)u(t)\varphi_0(t)]dt \geq \Lambda \int_0^{1-\delta} \alpha(t)u(t)\varphi_0(t)dt
$$

因此

$$
\int_0^{1-\delta} a(t)u(t)\varphi_0(t)dt = 0 \quad \text{和} \quad t \in [\delta, 1 - \delta] \quad \text{时} \quad a(t)u(t)\varphi_0(t) = 0
$$

矛盾。所以 $\|u\|_{C^0[0,1]} \leq M$，从而 u 是原问题(1)的解。

参考文献：

Positive Solutions for a Class of Singular Boundary Problems of Second Order

XIONG Ming

Dept. of Mathematics, Dali University, Dali Yunnan 671000, China

Abstract: Some results of the existence of positive solutions for singular boundary value problems have been given as

$$
\begin{align*}
-(p(t)u'(t))' + q(t)u(t) &= f(t, u(t)) & t \in (0, 1) \\
u(0) = u(1) &= 0
\end{align*}
$$

where the function $f(t, x)$ may be singular at $t = 0, 1$.

Key words: Singular boundary value problem; Positive solution; Variational method

责任编辑：章志康